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ABSTRACT

Automated auscultation analysis using electronic stethoscope
has received growing interest in clinical applications. Re-
cently, researchers showed successes by using deep learn-
ing methods to distinguish between pathological respiratory
sound classes. Nevertheless, the challenge persists due to the
scarcity of abnormal samples, and the distinct characteristics
between low-pitched and discontinuous crackles and high-
pitched and continuous wheezes. In this study, we proposed
a novel augmentation method, namely gamma patch-wise
correction augmentation, which directly operates on spec-
trograms to handle with these two challenges. We achieved
state-of-the-art performances on both 60-40 official split and
80-20 cross-validation of the public ICBHI dataset, outper-
forming previous top-performing studies by 11.82% in sen-
sitivity and 5.27% in ICBHI score. Furthermore, Grad-CAM
analysis shows that our approach better preserves the distinc-
tive characteristics of crackles and wheezes than SpecAug.

Index Terms— Data augmentation, Respiratory sound
classification, Gamma correction, Mix up

1. INTRODUCTION

Respiratory system diseases represent a leading cause of
mortality worldwide [1], imposing a substantial burden on
a global scale. Under the epidemic of COVID-19, the de-
mand of non-invasive and rapid diagnosis is increasing. The
evolution of stethoscope and advancement of computational
methods open up opportunities for automated examination
of respiratory sounds, reducing the demand for manual ef-
forts from physicians and medical professionals. A notable
milestone for the field is the release of the International
Conference on Biomedical and Health Informatics (ICBHI)
dataset [2]. It is a publicly accessible repository, designed to
investigate respiratory pathology using stethoscope, i.e., nor-
mal respiration, crackles, and wheezes. Recently, works that
take spectrograms as input for deep networks have achieved

state-of-the-art (SOTA) classification performances on these
auscultatory sound recordings (e.g., using structures of con-
volutional and recurrent neural networks [3–5]).

Many of the past works show a high score on identifying
normal respiration (most common class) but only a moder-
ate performance on detecting abnormal sounds [6–8]. Re-
liable identification of abnormal classes, including crackles
and wheezes, is pivotal for precise diagnosis and remains a
major computational challenge. Crackles and wheezes have
distinct characteristics. Crackles are discontinuous and low-
pitched with non-musical auditory patterns linked to condi-
tions like congestive heart failure, pneumonia, and lung fibro-
sis; wheezes are continuous high-pitched tonal sequences ob-
served in individuals with asthma, COPD, or tumors [9]. An
advancing method to handle the limited availability of patho-
logical samples and the subtle distinct characteristics that dif-
ferentiate between the two abnormal classes is key to improve
performances. Instead of many recent works that delved into
designing heavily complex network architectures for respira-
tory sound classification [7,8,10], we propose to handle these
issues with simple yet effective data augmentation strategy.

In spectrogram-based audio and speech modeling tasks,
SpecAugment (SpecAug) [11] has become the de-facto
method of feature augmentation. We argue that SpecAug, i.e.,
randomly masking strips or patches of spectrogram, might
eliminate those high or low-frequency bands that contain
critical acoustic signatures, especially for abnormal breathing
classes (Fig 1). In this work, we propose a novel augmen-
tation process, gamma patch-wise correction augmentation
(GaP-aug), that operates on log mel spectrogram. The aug-
mented dataset are generated with the mixup strategy [12],
where each to-be-mixed spectrogram first goes through a ran-
dom patch-wise masking with gamma correction. GaP-aug
preserves the continuous presence of wheezes and the explo-
sive burst of crackles by adjusting contrast within patches.
Our method improves the leading study by 5.27% in ICBHI
score, and further analysis reveals our method better preserves
key distinctive structures of crackles and wheezes.
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Fig. 1: (left) SpecAug; (mid) Patch masking; (right) GaP-aug.
The bottom row is with mixup

2. METHODOLOGY

2.1. Dataset

ICBHI 2017 dataset is composed of respiratory recordings
collected from 126 participants using a number of stetho-
scopes, comprising 6898 cycles with approximately 5.5 hours
in total. It includes four sound classes: Both (crackle and
wheeze), normal, crackle and wheeze. The label distribution
is heavily imbalanced: 3642 normal respiratory cycles, 1864
crackles, 886 wheezes, and 506 both crackles and wheezes.
We use the evaluation metrics proposed in the ICBHI chal-
lenge [2], including sensitivity (Sen.), which is recall of
abnormal; specificity (Spe.), which is recall of normal; and
final ICBHI score, the average of sensitivity and specificity.

2.2. Gamma patch-wise correction augmentation

The proposed GaP-aug operates by generating augmented in-
stances using mixup technique applied to patch-wise gamma
corrected spectrograms.

2.2.1. Mixup

The Mixup method [12] is a widely adopted data-agnostic
technique applicable to various modalities to construct syn-
thetic training samples and has found its success in deep
learning-based applications, e.g., Patch-Mix [6], TPH-YOLOv5
[13]. The process works by combining two training samples
with their respective labels to generate a new augmented
sample, described as follows:

x̃ = λx̃i + (1− λ)x̃j

y = λyi + (1− λ)yj
(1)

where x̃i, x̃j are features (spectrograms corrected by GaP-aug
in this case), and yi, yj are their one-hot labels. λ ∈ [0, 1] is a
randomly generated value following the Beta distribution, and
it represents the probability of the new produced label vector
of each class. The mixup method facilitates the linear tran-
sition of decision boundaries between classes and contributes
to a smoother estimation of uncertainty.

Algorithm 1 Pipeline of a batch
Parameters B = batch size;M = model; L = loss
Input: X = {x1, x2, ...xB};Y = {y1, y2, ...yB}

1: procedure GaP-aug(xi) ▷ a spectrogram
2: Select random patches P within xi

3: for pi ∈ P do
4: p̃i ← Gain(pi)γ

5: for xi ∈ X do ▷ X̃i ← Xi

6: x̃i ← GaP-aug(xi)
7: X̃a ← {x̃1, x̃3, ..., x̃B−1}; Ya ← {y1, y3, ..., yB−1}
8: X̃b ← {x̃2, x̃4, ..., x̃B}; Yb ← {y2, y4, ..., yB}
9: for i = 1 to B

2 do ▷ mixup
10: Random generate λ ∈ [0, 1]
11: X̃mix(i)← λX̃a(i) + (1− λ)X̃b(i)
12: Ymix(i)← λYa(i) + (1− λ)Yb(i)
13: prediction←M(X̃mix); embedding←M(X̃a)
14: L ← LNLL(prediction, Ymix) + Ltriplet(embedding)

2.2.2. Gamma patch-wise correction

Gamma correction is a technique mostly found in image pro-
cessing that involves using a nonlinear power-law transforma-
tion to each pixel, consequently rescaling the contrast of input
images. The formula is shown in Eqn. 2, where p and p̃ indi-
cates input and output selected patches, and gain is typically
set as 1.

p̃ = Gain(p)γ (2)

The variable γ affects the brightness of chosen pixels, and
when set to a high value, induces augmentation effects simi-
lar to noise suppression [14]. Based on grid search, γ is uni-
formly randomized within the interval [1.7, 2.0] in this work,
emphasizing strong and suppressing weak signals. Further-
more, patches of unfixed sizes are randomly selected from the
spectrogram during enumeration. Through grid search, we se-
lect 32 patches per spectrogram where each is no larger than
16 in frequency multiplied by 16 in time. A batch-wise GaP-
aug is shown in Algo. 1, and examples of mixup augmentation
of SpecAug, patch masking, and GaP-aug are shown in Fig 1.

2.3. Respiratory sound classifier

We use AudioSet pretrained CNN14, introduced in [18], as
backbone of our model that takes input of log mel spectro-
gram. This pre-trained model provides a high capacity rep-
resentation power alleviating issues of training from scratch
where large scale data availability is often an issue in med-
ical domain. After the GaP-aug process, we then fine-tune
on the augmented set using NLL loss and apply an additional
triplet constraint on the embedding to further encourage class-
wise discriminability. This fine-tuned CNN14 after GaP-aug
serves as our respiratory sound classifier.
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Table 1: Performance comparison with SOTA. Underline denotes the previous state-of-the-art, and Bold denotes best scores.
Audio denotes speed, loudness and time shift adjustment. Concat denotes concatenation augmentation. Clip denotes blank
clipping. Domain denotes domain transfer. Overlap denotes window overlapping.

Split Method Architecture Aug Acc.(%) Sen.(%) Spe.(%) Score(%)
60-40 Cotuning [8] ResNet – – 37.24 79.34 58.29

RespireNet [15] ResNet34 Concat, Clip – 40.10 72.30 56.20
Domain Transfer [16] ResNeSt Domain – 40.20 70.40 55.30

ARSC-Net [10] bi-ResNet-Att Audio, Mixup – 46.38 67.13 56.76
Metadata [3] CNN6 SpecAug – 39.15 75.95 57.55

Patch-Mix CL [6] AST Patch-Mix – 43.07 81.66 62.37
Ours CNN14 GaP-aug, Mixup 69.01 58.20 77.07 67.64

80-20 RespireNet [15] ResNet34 Concat, Clip – 53.70 83.30 68.50
LSTM-S7 [5] RNN Overlap – 62.00 85.00 74.00

MBTCNSE [7] TCN Overlap 72.50 65.30 86.10 75.70
Multi-feature [17] CNN Audio – 67.22 82.87 75.04

Contrastive Embed [4] CNN Audio 78.73 70.93 85.44 78.18
AudioSet pretrained [18] CNN – 64.80 43.38 83.93 63.66

Ours CNN14 GaP-aug, Mixup 80.70 74.62 86.13 80.37

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experiment setup

We evaluate on the official split of ICBHI, where patients
are divided into training (60%) and testing (40%) set with-
out overlap. We also report results on 5-fold cross-validation
(80%-20% split) following many recent works on this dataset
[4, 5, 7, 15, 17]. The sample rate of the dataset varies from
4kHz to 44.1kHz, we resample all recordings to 16kHz as pre-
vious works [3, 4, 6]. Then, each respiratory cycle is divided
into 10-second audio segments, and we concatenate shorter
cycles to 10 seconds. Next, the audio waveform is converted
into 64-dimensional log Mel filterbank with 25ms window
length and 6.25ms hop size to generate spectrograms. For
the CNN model, we train 20000 iterations using Adam opti-
mizer, 1e-5 learning rate and batch size of 16. Instances are
balanced sampled in each learning batch, i.e., that same num-
ber of samples from each class are loaded in a batch.

3.2. Classification results

Table 1 summarizes the classification performances of our ap-
proach and other classification methods in the literature on
the ICBHI dataset. We have achieved an increase of 11.82%
in sensitivity and 5.27% in final score compared to the top-
performing studies on 60-40 split dataset (sen. [10], score
[6]). On the 80-20 split of 5-fold cross-validation, we out-
perform the leading study [4] with improvements of 3.69% in
sensitivity and 2.19% in final score. A notable observation
is that our approach shows its strength in improving sensi-
tivity while prior studies often struggle. The ability of our
GaP-aug to positively identify abnormal breathing is key to

the improvement. In fact, by comparing ‘Ours’ to ‘AudioSet
pretrained’ (the same backbone pretrained CNN model with-
out GaP-aug), we see that there is a 31.24% improvement
of sensitivity after applying our proposed GaP-aug. Given
the significance of early diagnosis and treatment, our method
improves on overall performances and notably on sensitivity,
which is important particularly for clinical applications.

3.2.1. Comparison to other augmentation methods

We further compare performances against other methods of
augmentations using the same backbone model architecture.
The compared methods include: direct augmentations on au-
dio, such as white noise addition, speed alternation, loudness
adjustment and time-shift manipulation; concatenate augmen-
tation, introduced by [15], works by concatenating abnormal
waveforms as new instances; mixup metric learning [19]
applies mixup method on embeddings, employing soft-label
weights to separate embeddings of distinct classes with multi-
similarity loss; finally, the rest are spectrogram-based, blank
clipping [15] clips out insignificant segments, SpecAug [11]
masks specific time and frequency intervals, and PatchMask
randomly masks patches within spectrograms.

Table 2 summarizes our performance on the official 60-40
split when compared to the above-mentioned audio augmen-
tation techniques. One thing to note that almost all augmen-
tation methods help improve the classification performances,
and our proposed GaP-aug improves the most, i.e., 8.15%
on sensitivity and 10.41% on ICBHI score, compared to
method without augmentation, referred as the ‘Naı̈ve’ ap-
proach. Mixup strategy further enhances the performances by
comparing Gap-aug w/o Mixup and Gap-aug w/ Mixup.
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Table 2: Performance comparison of augmentations.

Augmentations base on Sen.(%) Spe.(%) Score(%)
Naı̈ve [18] – 48.34 64.28 56.31

Noise audio 50.21 62.06 56.14
Speed,loudness,shift audio 47.83 64.28 56.06
Concat+Blank [15] audio, spec 54.46 78.53 66.50
Mixup metric [19] embed 51.74 79.48 65.61

Mixup [12] spec 55.88 71.82 63.85
SpecAug w/o Mixup spec 50.89 77.96 64.43

PatchMask w/o Mixup spec 54.88 76.18 65.53
GaP-aug w/o Mixup spec 56.49 76.94 66.72
SpecAug w/ Mixup spec 48.63 79.54 64.09

PatchMask w/ Mixup spec 54.88 77.01 65.94
GaP-aug w/ Mixup spec 58.20 77.07 67.64

3.3. Analysis

In this section, we present a visualization analysis to demon-
strate the impact of our augmentation method on our back-
bone CNN model. We utilize method of Grad-CAM [20] to
locate the critical parts within the testing spectrograms that
play significant roles in the model’s predictions. The process
works by identifying and processing the gradient of the tar-
get sample in the final convolutional layer; Grad-CAM then
provides a heat map, facilitating the visualization of how the
model interprets our sample, and which specific areas within
the images are most important on prediction outcomes. This
technique assists in analyzing whether our predictions align
with the medical descriptions of abnormal characteristics.

We conduct a comparative analysis of Grad-CAM results
between our method and SpecAug [11], because SpecAug is
a widely adopted augmentation that has a similar operation
to our approach. Fig. 2a shows the outcome of an illustra-
tion sourced from the Both class. In the case of SpecAug,
its emphasis is dominantly localized at the low-frequency
and short-temporal segments of the spectrogram (the Grad-
Cam visualization displays in red), while overlooking the
high-frequency bands, results in wrong prediction of Crackle.
Conversely, GaP-aug notices both low and high-frequency
characteristics along with temporal continuity, resulting in
correct prediction. Fig. 2b demonstrates an example sourced
from the Crackle class. SpecAug is misdirected toward the
high-frequency segments, not focusing on the critical low-
frequency explosive sounds. By contrast, GaP-aug shows
attention on information around the low-frequency intervals.
Finally, Fig. 2c illustrates an instance sourced from the
Wheeze class. In the context of SpecAug, it fails to detect
abnormal features, thus leading to an incorrect prediction of
Normal. On the contrary, GaP-aug demonstrates attention
towards continuous segments within high-frequency bands.

Our analysis points out an issue when implementing
SpecAug on respiratory sound classification. Masking time
and frequency intervals directly may cause misdirection dur-
ing training process, since it is likely that critical acoustic

(a) Grad-CAM example of Both, SpecAug predicted Crackle.

(b) Grad-CAM example of Crackle, SpecAug predicted Wheeze.

(c) Grad-CAM example of Wheeze, SpecAug predicted Normal.

Fig. 2: Grad-CAM of abnormal instances. The left column
is original spectrograms, mid is overlay of Grad-CAMs from
SpecAug, right is overlay of Grad-CAMs from GaP-aug.

signature of pathological breathing sounds may have been
masked as well. Instead, our GaP-aug works by not only
increasing the dataset diversity, but also preserves the distinct
characteristics of abnormal sound classes.

4. CONCLUSION AND FUTURE WORK

In this work, we propose a gamma patch-wise correction
augmentation technique, which involves contrast rescaling
of random patches of spectrograms. GaP-aug effectively
enhances performances in detecting abnormal classes by
addressing two key challenges in respiratory sound classifica-
tion: data scarcity and unique acoustic characteristic among
abnormal classes. Our method achieves state-of-the-art re-
sults on the 60-40 official split and 80-20 split of 5-fold
cross-validation on ICBHI dataset, outperforming all existing
approaches. Furthermore, this technique is straightforward to
implement while yielding significant improvements. Through
Grad-CAM analysis, it shows that our approach helps guide
the learning to focus on specific regions of the spectrogram
aligns with the known medical descriptions of abnormal res-
piratory sound characteristics. In future, we intend to extend
the application of our methodology to diverse datasets en-
compassing distinct types of medical acoustics, such as heart
murmurs. Furthermore, we also like to extend our method
to handle use cases in emergency department where real-
world noise may further introduce unwanted distortion to the
spectrograms.
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C. Jácome, A. Marques, et al., “A respiratory sound
database for the development of automated classifica-
tion,” in Precision Medicine Powered by pHealth and
Connected Health: ICBHI 2017, Thessaloniki, Greece,
18-21 November 2017, pp. 33–37, Springer, 2018.

[3] I. Moummad and N. Farrugia, “Pretraining respiratory
sound representations using metadata and contrastive
learning,” in IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2023.

[4] W. Song, J. Han, and H. Song, “Contrastive embeddind
learning method for respiratory sound classification,”
in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1275–1279, IEEE, 2021.

[5] D. Perna and A. Tagarelli, “Deep auscultation: Pre-
dicting respiratory anomalies and diseases via recur-
rent neural networks,” in 2019 IEEE 32nd Interna-
tional Symposium on Computer-Based Medical Systems
(CBMS), pp. 50–55, IEEE, 2019.

[6] S. Bae, J.-W. Kim, W.-Y. Cho, H. Baek, S. Son, B. Lee,
C. Ha, K. Tae, S. Kim, and S.-Y. Yun, “Patch-Mix Con-
trastive Learning with Audio Spectrogram Transformer
on Respiratory Sound Classification,” in Proc. INTER-
SPEECH 2023, pp. 5436–5440, 2023.

[7] Z. Zhao, Z. Gong, M. Niu, J. Ma, H. Wang, Z. Zhang,
and Y. Li, “Automatic respiratory sound classification
via multi-branch temporal convolutional network,” in
ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pp. 9102–9106, IEEE, 2022.

[8] T. Nguyen and F. Pernkopf, “Lung sound classification
using co-tuning and stochastic normalization,” IEEE
Transactions on Biomedical Engineering, vol. 69, no. 9,
pp. 2872–2882, 2022.

[9] Y. Kim, Y. Hyon, S. S. Jung, S. Lee, G. Yoo, C. Chung,
and T. Ha, “Respiratory sound classification for crack-
les, wheezes, and rhonchi in the clinical field using deep
learning,” Scientific Reports, vol. 11, no. 1, p. 17186,
2021.

[10] L. Xu, J. Cheng, J. Liu, H. Kuang, F. Wu, and J. Wang,
“ARSC-Net: Adventitious respiratory sound classifica-
tion network using parallel paths with channel-spatial
attention,” in 2021 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pp. 1125–
1130, IEEE, 2021.

[11] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, and Q. V. Le, “SpecAugment: A Sim-
ple Data Augmentation Method for Automatic Speech
Recognition,” in Proc. INTERSPEECH 2019, pp. 2613–
2617, 2019.

[12] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-
Paz, “mixup: Beyond empirical risk minimization,” in
International Conference on Learning Representations,
2018.

[13] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOv5:
Improved YOLOv5 based on transformer prediction
head for object detection on drone-captured scenarios,”
in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pp. 2778–2788, 2021.

[14] N. Shimano, “Suppression of noise effects in color cor-
rection by spectral sensitivities of image sensors,” Opti-
cal Review, vol. 9, pp. 81–88, 2002.

[15] S. Gairola, F. Tom, N. Kwatra, and M. Jain,
“RespireNet: A deep neural network for accurately de-
tecting abnormal lung sounds in limited data setting,” in
2021 43rd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC),
pp. 527–530, IEEE, 2021.

[16] Z. Wang and Z. Wang, “A domain transfer based data
augmentation method for automated respiratory clas-
sification,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 9017–9021, IEEE, 2022.

[17] D. Kumar et al., “Multi spectral feature extraction to im-
prove lung sound classification using cnn,” in 2023 10th
International Conference on Signal Processing and In-
tegrated Networks (SPIN), pp. 186–191, IEEE, 2023.

[18] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “PANNs: Large-scale pretrained audio neu-
ral networks for audio pattern recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Process-
ing, vol. 28, pp. 2880–2894, 2020.

[19] S. Venkataramanan, B. Psomas, E. Kijak, L. Amsaleg,
K. Karantzalos, and Y. Avrithis, “It takes two to tango:
Mixup for deep metric learning,” in ICLR 2022-10th
International Conference on Learning Representations,
pp. 1–21, 2022.

[20] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra, “Grad-CAM: Visual explana-
tions from deep networks via gradient-based localiza-
tion,” in Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), pp. 618–626, 2017.

555

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 15,2024 at 04:29:17 UTC from IEEE Xplore.  Restrictions apply. 


